当前位置:首页 >> muRata/村田 >> 村田代理带您了解电路板布局、布线的的抗ESD设计规则

村田代理带您了解电路板布局、布线的的抗ESD设计规则

电路板设计 抗ESD设计 作者: 来源: 发布时间:2019-05-05 18:23:27   浏览:30

电路板布局、布线的的抗ESD设计规则

一、概述:

静电释放(ESD)是我们每一个产品设计工程师需要考虑的一个相当重要的问题。大多数电子设备都 处于一个充满ESD的环境之中,ESD可能来自人体、家具甚至设备本身(内部)。电子设备完全遭受ESD损毁比较少见,然而ESD干扰却很常见,它会导致设备锁死、复位、数据丢失和不可靠。其结果可能是:在寒冷干燥的冬季里,电子设备经常出现故障现象,但是维修时又显示正常。

村田的代理颖特新科技带您了解如何防止ESD,首先必须知道ESD是什么及ESD进入电子设备的过程。一个充电的导体接近另一个导体时,就可能发生ESD。首先,在2个导体之间会建立一个很强的电场,产生由电场引起的击穿。当2个导体之间的电压超过它们之间空气和绝缘介质的击穿电压时,就会产生电弧。在0.7ns~10ns的时间里,电弧电流会达到几十A,有时甚至会超过100A。电弧将一直维持,直到2个导体接触短路或者电流低到不能维持电弧为止。


1.1 ESD的产生取决于物体的起始电压、电阻、电感和寄生电容:

  • 可能产生电弧的实例有人体、带电器件和机器。
  • 可能产生尖峰电弧的实例有手或金属物体。
  • 可能产生同极性或极性变化的多个电弧的实例有家具等。

1.2 ESD可以通过5种耦合途径进入电子设备:

1) 初始的电场能容性耦合到表面积较大的网络上,并在离ESD电弧100mm处产生高达4000V/m的高压。

2) 电弧注入的电荷/电流可以产生以下的损坏和故障:

  • 穿透元器件内部的薄绝缘层,损毁MOSFET和CMOS元器件的栅极(常见)。
  • CMOS器件中的触发器锁死(常见)。
  • 短路反偏的PN结(常见)。
  • 短路正向偏置的PN结(少见)。
  • 熔化有源器件内部的焊接线或铝线(少见)。

3) 电流会导致导体上产生电压脉冲(V=L×dI/dt,这些导体可能是电源、地或信号线,这些电压脉冲将进入与这些网络相连的每一个元器件(常见)。

4) 电弧会产生一个频率范围在1MHz~500MHz的强磁场,并感性耦合到临近的每一个布线环路,在离ESD电弧100mm远的地方产生高达15A/m的电流。

5) 电弧辐射的电磁场会耦合到长的信号线上,这些信号线起到接收天线的作用(少见)。


ESD会通过各种各样的耦合途径找到设备的薄弱点。ESD频率范围宽,不仅仅是一些离散的频点,它甚至可以进入窄带电路中。为了防止ESD干扰和损毁,必须隔离这些路径或者加强设备的抗ESD能力。

二、抗ESD的布局布线设计

通过PCB印刷电路板的分层设计、恰当的布局布线可以实现PCB的抗ESD设计。要达到期望的抗ESD能力,通常要通过测试、解决问题、重新测试这样的周期,每一个周期都可能至少影响到一块PCB的设计。在PCB设计过程中,通过预测可以将绝大多数设计修改仅限于增减元器件。调整PCB布局布线,使之具有最强的ESD范围性能。

2.1 尽可能使用多层PCB:相对于双面PCB而言,地平面和电源平面以及排列紧密的信号线-地线间距能够减小共模阻抗和感性耦合,使之达到双面PCB的1/10~1/100。尽量地将每一个信号层都紧靠一个电源层或地线层。对于顶层和底层表面都有元器件、具有很短连接线以及许多填充地的高密度PCB,可以考虑使用内层线。大多数的信号线以及电源和地平面都在内层上,因而类似于具备屏蔽功能的法拉第盒。

2.2 对于双面PCB来说,要采用紧密交织的电源和地栅格。电源线紧靠地线。在垂直和水平线或填充区之间,要尽可能多地连接。面的栅格尺寸60mm。如果可能,栅格尺寸应<13mm。

2.3 确保每一个电路尽可能紧凑,尽可能将所有连接器都放在一边。I/O电路要尽可能靠近对应的连接器。在引向机箱外的连接器(容易直接被ESD击中)下方的所有PCB层上,要放置宽的机箱地或者多边形填充地,并每隔大约13mm的距离用过孔将它们连接在一起。在连接器处或者离接收电路25mm的范围内,要放置滤波电容。

  • 用短而粗的线连接到机箱地或者接收电路地(长度小于5倍宽度,最好小于3倍宽度)
  • 信号线和地线先连接到电容再连接到接收电路。

2.4 如果可能,将电源线从卡的中央引入,并远离容易直接遭受ESD影响的区域。

2.5 在卡的边缘上放置安装孔,安装孔周围用无阻焊剂的顶层和底层焊盘连接到机箱地上。在卡的顶层和底层靠近安装孔的位置,每隔100mm沿机箱地线将机箱地和电路地用1.27mm宽的线连接在一起。与这些连接点的相邻处,在机箱地和电路地之间放置用于安装的焊盘或安装孔。这些地线连接可以用刀片划开,以保持开路;或用磁珠/高频电容的跳接,以改变ESD测试时的接地机制。

2.6 PCB装配时,不要在顶层或者底层的焊盘上涂覆任何焊料。使用具有内嵌垫圈的螺钉来实现PCB与金属机箱/屏蔽层或接地面上支架的紧密接触。PCB要插入机箱内,不要安装在开口位置或者内部接缝处。如果一个机箱或者主板要内装几个电路卡,应该将对静电最敏感的电路卡放在最中间。

2.7 在每一层的机箱地和电路地之间,要设置相同的"隔离区";如果可能,保持间隔距离为0.64mm。如果电路板不会放入金属机箱或者屏蔽装置中,在电路板的顶层和底层机箱地线上不能涂阻焊剂,这样它们可以作为ESD电弧的放电棒。

2.8 要以下列方式在电路周围设置一个环形地:除边缘连接器以及机箱地以外,在整个外围四周放上环形地通路。确保所有层的环形地宽度大于2.5mm。每隔13mm用过孔将环形地连接起来。将环形地与多层电路的公共地连接到一起。对安装在金属机箱或者屏蔽装置里的双面板来说,应该将环形地与电路公共地连接起来。不屏蔽的双面电路则应该将环形地连接到机箱地,环形地上不能涂阻焊剂,以便该环形地可以充当ESD的放电棒,在环形地(所有层)上的某个位置处至少放置一个0.5mm宽的间隙,这样可以避免形 成一个大的环路。信号布线离环形地的距离不能小于0.5mm。

2.9 在能被ESD直接击中的区域,每一个信号线附近都要布一条地线。对易受ESD影响的电路,应该放在靠近电路中心的区域,这样其它的电路可以为它们提供一定的屏蔽作用。

2.10 通常在接收端放置串联的电阻和磁珠,而对那些易被ESD击中的电缆驱动器,也可以考虑在驱动端放置串联的电阻或磁珠。通常在接收端放置瞬态保护器。

  • 用短而粗的线(长度小于5倍宽度,最好小于3倍宽度)连接到机箱地。
  • 从连接器出来的信号线和地线要直接接到瞬态保护器,然后才能接电路的其它部分。要注意磁珠下、焊盘之间、可能接触到磁珠的信号线的布线。有些磁珠导电性能相当好,可能会产生意外的导电路径。

2.11 要确保信号线尽可能短。信号线的长度大于300mm时,一定要平行布一条地线。确保信号线和相应回路之间的环路面积尽可能小。对于长信号线每隔几厘米调换信号线和地线的位置来减小环路面积。不能将受保护的信号线和不受保护的信号线
并行排列。

2.12 确保电源和地之间的环路面积尽可能小,在靠近集成电路芯片每一个电源管脚的地方放置一个高频电容。在距离每一个连接器80mm范围以内放置一个高频旁路电容。电源或地平面上开口长度超过8mm时,要用窄的线将开口的两侧连接起来。

2.13 在可能的情况下,要用地填充未使用的区域,每隔60mm距离将所有层的填充地连接起来。确保在任意大的地填充区(大约25×6mm)的2个相反端点位置处要与地连接。

2.14 要特别注意复位、中断和控制信号线的布线。复位线、中断信号线或者边沿触发信号线不能布置在靠近PCB边沿的地方。要采用高频滤波,远离输入和输出电路和远离电路板边缘。

2.15 将安装孔同电路公地连接在一起,或者将它们隔离开来。

  • 金属支架必须和金属屏蔽装置或者机箱一起使用时,要采用一个0Ω电阻实现连接.
  • 确定安装孔大小来实现金属或者塑料支架的可靠安装,在安装孔顶层和底层上要采用大焊盘,底层焊盘上不能采用阻焊剂,并确保低层焊盘不采用波峰焊工艺焊接

编辑:amy  最后修改时间:2019-05-06